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ABSTRACT

In this research the thesis objective was to replace the resistors of an RC network

resulting in a sampled data equivalent network. The switched capacitor resistors are

exactly equivalent to resistors by themselves; however, such an equivalence may not

hold true when the realizations are used to replace resistors of an RC active network.

During the research, firstly, the types of replacement methods and their properties were

discussed. Furthermore, the main SC building blocks were presented and a second

order switched-capacitor phase-locked loop was implemented in hardware.
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I. INTRODUCTION

A. THE NEED FOR SWITCHED CAPACITOR REALIZATION

The periodic sampling of analog signals has been used for many years to

implement basic analog signal processing functions. These functions include amplifiers,

summers, delays, sample-and-hold, integration, and differentiation. One of the primary

advantages of these circuits is that they provide an economic and accurate

implementation of analog circuit functions with existing integrated circuit technology.

Continuous analog circuits are composed of resistors, capacitors, and active

devices. However, the performance of these circuits depends upon the accuracy of the

resistors and capacitors. Especially in filters, this becomes a serious problem because

the RC product must be accurately defined for a desired performance. To obtain a

sufficient absolute value accuracy most of the circuits designed using these elements

need external trimming. Another serious problem is the changes in the values of the

passive components as temperature changes. Resistor and capacitor values may not

change by the same amount and the same direction, which may pose a serious problem

in some critical situations. Besides these undesirable properties, large values of time

constants require large values of resistance which also requires large areas in the

integrated circuit.

Analog sampled data techniques provide a unique solution to the above

problems. It will be shown that the resistor can be replaced by switches and capacitors.

Filters using switched-capacitor (SC) techniques overcome a major obstacle to filter-

on-a-chip fabrication, by simulating resistors with high-speed switched capacitors. Such

an approach thus eliminates the necessity for precise integrated resistor values that

require costly trimming procedures and permits fabrication of precise monolithic

analog capacitor filters. This results in the important fact that the circuit performance

and the accuracy is determined by capacitor ratios. Ratios of elements are always

easier to control. MOS IC technology can implement capacitor ratios to within about

0.3% of specified values, [Ref. 1]. Since the only concern is the ratios rather than

individual values of capacitors, it can be possible to use very small capacitance values

in the integrated circuit, resulting in smaller chip areas.

11
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The advantage of the switched capacitor realization of resistors can he

appreciated by comparing the RC time constant, r. of a resistor R
{

and a capacitor C-,.

as

T = RjC-, (1.1)

If a larger time constant is required. R or C or both can be made large, resulting in a

larger chip area. When the resistor is replaced with a SC realization. Equation 1.1

becomes

r = T —^- (1.2)
C f v '

M

where T
c

is the clock period and C^ is the capacitor used by the SC realization,

assuming that R, is replaced by a series or parellel SC equivalent. In this case larger

time constants can be obtained by increasing the capacitor ratios rather than increasing

the individual capacitor values, resulting in a smaller chip area.

Another concern is to maintain the time constant accuracy. If the accuracy is

defined as dT T for T. the following expression can be written

di dR, dC^
+ —

—

(1.3)
T Rj C

2

where dRj Rj represents the resistor accuracy and dC
2
C

2
represents the capacitor

accuracy. The worst case accuracy of r will be the sum of the absolute accuracies of Rj

and C-,. which is very poor if Rj and C-, are implemented on an integrated circuit. If

the SC equivalent of R, is used, the accuracy of t can be expressed as

dr dT dC, dC.
-*- + "=- [- (1.4)
T C C

C

Assuming that T is perfectly accurate, that is, dT /T = 0,

12
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dt dC, dC.
= [- (1.5)

t c
2

c,

Because the two capacitors C, and C-, are built close together, using the same

technology, the acuracy of Equation 1.3 is much improved over that given in Equation

1.5. Furthermore, because the capacitors are similar in many respects, such properties

as linearity and temperature coefficients are well behaved. When the temperature

changes, their values change by the same amount toward the same direction, leaving

the ratio almost constant. This is indeed a very satisfying result when t must be

carefully controlled.

B. SWITCHED CAPACITOR EQUIVALENT RESISTORS

A Switched-capacitor consists basically of a capacitor whose charge is transferred

from one node to another by a switch, thus simulating a resistor.

The switched capacitor resistor of Figure 1.1 (a) is called the parallel switched

capacitor resistor realization. It simulates the circuit of Figure 1.1(b). The switch

symbol will always be drawn open. It will be assumed that the switches are controlled

by the application of a two-phase clock. The period of time is divided into two equal

segments as illustrated in Figure 1.1 (c). The segments will be called phase periods. It

will be assumed that the phase periods are seperated by a finite period of time in which

all the switches are open. This situation is called nonoverlapping clocks, which is a

very important property for switched capacitor networks. The open-closed positions of

the switches will be determined by the phases of the clock, the switch is closed when

the waveform is high and open when the waveform is low.

It can be consider that the analog sampled data realizations correspond to one

topology during the <J>
2
(or <I>.) clock phase and to a second topology during the <P,

(or <!>-,) clock. A useful complementary notation for the clock phases is denoted by

even and odd, which can be associated to <P 7 and <Pj by definition. In fact, practically,

to ensure that the even and odd switches are never turned on simultaneously, the

clocks are made nonoverlapping (i.e.. the duty cycle is slightly less than 50° o). It is

noted that turning both the <P and <P switches off simultaneously does not affect the
e o

behavior of the circuit.

13
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^
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19

TV2 1 3T/-2 2T

(c>

Fieure 1.1 Parallel Switched Capacitor Realization.
(a) Switched capacitor realization of a continuous resistor, (b) Continuous resistor.

(c) Clock waveforms for the switched capacitor realization.

Both input and output of the SC network are sampled data signals which change

in value only at the switching instants kT. Thus, the voltage sources and internal

circuit voltages are assumed to be sampled at times kT and held over a one-half clock

period interval, T. To illustrate graphically, the sampled-data voltage waveform in

Figure 1.2 (a) can be partitioned into its even and odd components as shown,

respectively, in Figure 1.2 (b) and (c).

Mathematically it can be expressed as

v(t) = v (t) v
e
(t) (1.6)

or in the z-domain

V(z) = V
o
(z) + V

e
(z) (1.7)

14
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Figure 1.2 (a) Sampled Data Voltage Waveforms
Partitioned into (b) Even and (c) Odd Components.
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where

V
o
(z) = z

l 2V
e
(z) (1.8)

The input and output voltages of a time-varying sampled data network can be

expressed as

V
in<

z
> = V

in°(
z

»

+ V
in

C
( z ) U-*)

V (z) = V
o
°(z) + V

o
e
(z) (1.10)

This can he made equivalent to

V
in

(
'

z
>

= v
m^ z)

l

+ v
in<

z)
l <

M1)

°1 ^2

V
o
(z) = V (z)| 4- V

o
(z)| (1.12)

°1 °2

Therefore, at least four transfer functions are possible if V (z) is sampled at all times,

then the effects during Oj and <!>-, clock phases must be added.

The charge of the capacitor in Figure 1.1 (a) is transferred from one node to

another using the switches controlled by the two-phase clock. The first clock pulse. O,,

which will occur during the first phase period, will close switch 1. At this time. C will

be charged to V.. In practice, a finite resistance R is associated with the switch, that is,

C cannot be charged to V. in zero time. Obviously, the RC time constant must be

much less than the width of <t>j for the charge, Qj, to be transferred

Q
{

= CVj (1.13)

The second clock pulse, <P->, which will occur during the second phase period, will close

switch 2. At this time, C will be discharged to

Q, = CV, (1.14)

16
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An amount of charge equal to AQ = Qj - Q-> is transferee! from one terminal to

another. This charge transfer represents an equivalent current o(

aq v,-\\
1.15)

T 1

T
C

and the form of this equation indicates that the switched capacitor can be modeled as a

resistor of value

1

e(
} f c

where f. = 1 T is the switching frequency in Hertz. The switched capacitor resistor of

Figure 1.1 (a) is called the parallel switched capacitor resistor realization. [Ref. 2].

A second switched capacitor realization of the continuous resistor is given in

Figure 1.3. This configuration is called the series switched capacitor resistor realization

of the continuous resistor.

In the series case, V, is connected to V- through C for a portion of the clock

period, the second phase period. The first clock phase makes the capacitor short

circuit, therefore. Figure 1.3 is valid only at <!>-,.

Qj =

q2
= qv.-Vj)

AQ = Q, - Q2

AQ = C(Vj - V
2)

Using the above equations, we find Equation 1.15 and Equation 1.16 again for the

series switched-capacitor case.

A third realization is a combination of the parallel and series configuration and is

shown in Figure 1.4. This configuration is called the series-parallel realization of a

resistor. The circuit can be analyzed by using similar technique as for the previous two

realizations. At <l>
[

or t=T 2. the charge which flowed across the left dotted line in the

direction of i

1
is shown in Figure 1.5 (a). This charge is

(2,(1/2) = C
2
V, (1.17)

17
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Figure 1.3 Series Switched Capacitor Realization of a Continuous Resistance.
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+
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+

II
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-

Figure 1.4 Series-Parallel Switched Capacitor Realization of a Continuous Resistance.
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h
C

x

>
II T
II 'a

<-: <
+ + *21 +

¥
C

2 == , (S H C
2 O v -

ca> (b)

Figure 1.5 Series-Parallel Switched Capacitor Realization,
(a) <I>,, first phase period (b) <I>

2
, second phase period.

At $2 or t
= T, the charge which flowed across the right dotted line in the direction of

L is

h ' h\
+

hi

Q2
(T) = c

1
(w

2
-w

1
)+c

2
v
2

(1.18)

An amount of charge equal to AQ = Qj - Q2
transfered from one terminal to another.

This charge transfer also represents an equivalent current, I;

AQ = C
2
V

1
-C

]

V
2
+ C

]
V

1
-C

2
V
2

= (VV^Cj+q)

i
=

AQ (VrV 2 )

T 1

T
C +c

2

(1.19)
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and the form of this equation indicates that this type of realization can also be

modeled as a resistor of value

R-„ =
ec

i q+q (q +c^ (1.20)

if C, = C, = C, then;

R-„ =
ec

i 2Cf
(1.21)

when Equation 1.16 and Equation 1.21 are compared, it can be seen that the series-

parallel realization may result half the equivalent resistance value for the same clock

frequency.

h
>

1 a

<H

—

+ . <.
, / +

\(
P

% $i

T

Figure 1.6 Bilinear Switched Capacitor Realization of a Continuous Resistance.

A fourth switched capacitor resistor realization is shown in Figure 1.6 This

configuration is called the bilinear switched capacitance realization of a resistor. In the

20
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bilinear SC resistor realization, a complete clock period is really T/2 rather than T,

because the input signal waveform is sampled twice in a single clock period.

It can be shown that this realization results in an equivalent resistor given below.

Req
~

T 1

4C 4Cf
(1.22)

Although the bilinear realization has basically the same performance as the series-

parallel realization, there are some practical differences that are important. When each

of the above realizations is replaced by the resistors in an analog network, resulting in

a switched capacitor network, each will be found to possess different properties. This

will be shown in the following chapter.

C. PHASE LOCKED LOOP (PLL)

A phase-locked loop is a device by means of which the phase of a frequency-

modulated oscillator output signal is forced to follow the input signal. A diagram of

this device is shown in Figure 1.7.

in
4m+.

vj
Phase

Detector
v

Low—Pass
Fl Iter

. \
Dc

Amp 1 i f i er—
i / s

I

7 K

fo
Uo 1 tage

Contro 1 1 ed

03ci 1 lator
f
\

Figure 1.7 Phase Locked Loop System, (PLL).
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The input to the PLL circuit is a frequency, not a dc voltage, and the circuit

operates in the following manner:

1. The incoming frequency is one input to the phase detector.

2. The output from the VCO. also a frequency, is the second input to the phase
detector.

3. The output of the phase detector is a function of the phase difference between
the two signals applied. This error voltage, after low-pass filtering in the loop
filter and amplifying by the dc amplifier, "is applied to the modulation input of
the voltage controlled oscillater (VcO).

4. This dc signal voltage causes the VCO to begin varving its frequency in the
direction 61 the incorning frequency. When the loop fs in lock, the two signals
to the comparator are of the same'frequencv although not necessarily in phase.
A fixed phase difference between the two sig'nals to the phase detecto'r results in
a fixed dc voltage to the VCO. Changes in the input signal frequency then result
in change in the dc voltage to the VCO.

The VCO can operate over different frequency ranges through the selection of

different RC time constants. The VCO in a phase-locked loop has a "free-running" or

"center" frequency (f ), which is the frequency of the VCO when not locked to the

incoming signal frequency. As the incoming frequency approaches the free running

frequency of the VCO. the output of the phase detector begins forcing the frequency of

the VCO toward a lock condition. The range over which this action occurs is called the

"capture" or "lock-in" range. The "lock", "tracking", or "hold-in" range is the range of

incoming signal frequencies over which the loop will remain locked. The capture range

is always smaller than the lock range. Figure l.S shows the relationship between the

capture range and the lock range, [Ref. 3].

It can be seen from Figure l.S that as an incoming signal frequency increases

toward the free-running frequency, the loop will capture the signal at a frequency close

to the free-running frequency and then lose lock at a frequency on the other side of the

free-running frequency further away. The frequency at which the PLL loses lock is the

end of the lock range, and this is always a broader range than the capture range. As a

higher frequency signal decreases relative to the free-running frequency, the previous

operation is repeated in a reverse manner. Both the capture and the lock ranges are

determined by the cutoff frequency of the low-pass filter which also determines the

bandwith of the PLL.
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II. SWITCHED CAPACITOR EQUIVALENT RC NETWORKS

In this chapter, the main goal will be developing realizations for continuous RC

passive networks. The realizations of such networks are done by the replacement of the

continuous realizations developed in the previous section.

As an example an RC passive low-pass filter will be realized using switched

capacitor equivalent resistance technique, resulting an analog sampled data realization.

Figure 2.1 Continuous RC Circuit.

In Figure 2.1 the continuous frequency domain transfer function of this circuit is

given as

H(s) =
1 1

STj + 1 s/w, + 1

(2.1)

where T, = RjC, and w, = 1/T,. The magnitude of the frequency response is given as

|H(jw)| = [l+(wR.C,)2
r
1/2

(2.2)

and the argument or phase shift is
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Arg H(jw) = -tan'^w^Cj) (2.3)

The frequency response of Figure 2.1 is given in Figure 2.2. As an example R, = 10

KQ., C
2
=10 nF, and w, = 10><10 rad sec were chosen to observe the frequency

response as a graphical application.

An analog sampled data realization of Figure 2.1 can be obtain by replacing the

resistor with one of the switched capacitor equivalent resistances developed in the

previous section. But it will be shown that such an equivalence may not hold true when

the realizations are used to replace resistors of an RC network.

A. PARALLEL REALIZATION

Figure 2.3(a) shows a switched capacitor RC realization using the parallel SC

resistor equivalent of Figure 2.1. To analyze this circuit, the clock sequence has to be

identified. Figure 2.3(b) shows the necessary two phase clock sequence. <P, and <P-,

specify the phase periods during which switches designated as <I>. and <!>., close and will

be denoted as the odd and even phase clocks. The odd phase period can be arbitrarily

defined as O,, of the two phase clock. Therefore, the period of time where

(n + i) < tT < (n+ i+1 2) odd (Oj) phase period

(n + i+1 2) < t T < (n+ i+1) even (02) phase period.

where i = (...,-2,-1,0.1,...) corresponds to the ith clock period. The phase periods have

been defined to include the left end point only. This convention assures that the

nonoverlapping property is preserved. In the analysis of Figure 2.3(a). it will be

assumed that v.(t) is constant during each phase period. Let us consider first the odd

phase period where

(n-1) < t/T < (n-1/2)

During the operation of the switch <t> v it will be assumed that the switch <t>
{

closes

immediately after t = (n-l)T and that C, is instantaneously charged to v,°[(n-l)Tj. In

practice, the time required for v. to charge this voltage value should be small compared

to T 2. The same situation can also be applied to the <!>., switch during its phase

period. The only concern is that the switches must be closed long enough to transfer

the charge. Otherwise the clock circuits would face very severe timing requirements.

During the odd phase perid 0,. Figure 2.3(a) can be redrawn as shown in Figure

2.4(a). From this figure it is seen that

v
cl

(t) = v^Kn-DT] = Vl°(n-1) (2.4)
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Figure 2.2 (b) The Phase Response of the Circuit of Figure 2.1,
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(a) Parallel Configuration, (b) Clock Phasing.

v
c2

(t) = v
2
°[(n-l)T] = v

2
°(n-l) (2.5)

After this point the clock period T in Equation 2.4 and Equation 2.5 will be dropped

because it adds no useful information and simplifies the notation.

In the next even phase period (n-1/2) < t/T< n, the <Pj switch is open, and the

O., switch closes. Figure 2.4(b) represents Figure 2.3(a) during this phase period. At

the same time Cj and C
2
are paralleled, resulting in a new value of v

2
. Figure 2.4(b) is

converted to Figure 2.4(c) with uncharged capacitors and the voltage sources

representing the initial voltages on the capacitors. Using superposition techniques, it

can be solved for the voltage v., to get

v
2(t) = ^ ,U v

i°(
n - 1

)
+ -

C +C C +CM ^2

v
2
°(n-l) (2.6)

if v
2
(t) is evalutated at t = (n-1/2),
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v
2

e
(n-l 2) =

C
' v^n-l) + -^-v/<n-l) (2.7)

12 1

"*"

2

At the next phase period,

v,°(n) = v/(n-l 2) (2.8)

using Equation 2.S and the relationships of Table 1 in Appendix A, Equation 2.7 can

he written as

v2°( z ) = /I' vi°(z) + T^rr V
2
°(z) (2.9)

Solving for V-,°(z), V,°(z) results in the transfer function H°°(z) for odd-odd case.

V,°(z) 1 z'
1

H°°(z) = —2J_L = ; _
( 2.10)

V
1
°(z) 1 + a l-aO + arV 1

H °°( Z ) = -— (2.11)
(l + a)z-a

where a = Cj/Cj. From Equation 2.S

V
2
°(z) = z'

1 2V
2

e
(z) (2.12)

V,e
(z) 1 z'

1 2

H00
(z) = 2J = ^^ ( 2.13)

V.°(z) 1 + a l-a(l + a)
-1
z
-1

thus

H°°(z) = z"
1 2Hoe

(z) (2.14)

since v
1
°(n) = Vj

e
(n). the other two possible transfer functions are
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V,°(z) V,°(z)
H eo

(z) = -2 = —*-— = H°°(z) (2.15)
V^z) V^z)

\\ e
(z) \V(z)

H ee
(z) = -2— = -±L- = H oe

(z) (2.16)
Vj e

(z) \
1
°(z)

The method used to determine the transfer function of the analog sampled data

realization of the circuit of Figure 2.1 is called conventional network analysis method,

[Ref. 2]. There is another approach called charge conservation, [Ref. 4], which is

basically an application of Kirchoffs current law, where charge is used instead of

current. The method characterizes the charge conservetion condition at a particular

node for all time instants of one period. T. The two nodal charge equations can be

written for one node, for the odd clock phase

and for the even clock phase

where t' is a time reference, qi(t') is the charge left at one particular node at

equilibrium, q (t) is the charge at that particular node from the previous phase period

called as the memory charge, and q (t) is contribution charge injected at that particular

node. The superscripts of q
0,e

(t) imply that the contribution charge can be from the

even or odd clock phases or both.

Let us analyze the circuit in Figure 2.3(a) using the charge conservation method.

The components of Equation 2.18 can be identified as

q L
e
(n-l 2) = (q + C^v/Cn-l 2)

qm°(n-l) = C
2
v
2
°(n-1)

qc
°(n-l) = CwjV-l)

and for the next odd phase period

qL°(n)
= C

2
v
2
°(n)

qm
e
(n-l 2) = C

2
v
2
e
(n-l/2)

and since the contribution from the odd phase period is zero, that is,

o,e/
qc

°'e
(t) =
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using the above equations and taking the z-transform, the transfer function in

Equation 2.10 and Equation 2.13 can be obtained. If Equation 2. IS is written in terms

of its components

(C
1
+ C

2
)v

2
e
(n-l/2) = C

2
v
2

(n-l) + ClVl°(n-l)

and the Equation 2.17 in term of its components

qL
°(n

) = O 11 ' 12 '

C
2
v
2
°(n) = C

2
v
2

e
(n-1 2)

V
2
°(z) = v/z' 1 2

(Cj + C^V/Cz) = C
2
z"

1V
2
°(z)+ CjZ-W^Cz)

V,°(z) C.z" 1

V
1
°(z) (C]+C

2
)-C

2
z
-1

(2.19)

V,°(z) z'
1

H°°(z) = -2 = r— (2.20)
V.°(z) (l+cn-az" 1

Hence, Equation 2.11 was obtained again.

The switched capacitor RC realization of Figure 2.1 has demonstrated a general

property of sampled data SC networks. This property is that the z-domain transfer

function depends upon which phase period the output is sampled. There are four

possible sampled output waveform that can be obtained for a two phase clock scheme.

The next consideration is that whether or not Figure 2.3(a) is an equivalent

realization of Figure 2.1. To obtain the specified frequency response in Figure 2.2, how

can a be selected? One answer to this question would be to apply the forward

transformation of Table 2 in Appendix A to Equation 2.1 to get

. -r -l

H(s) —— > H(z) = -1 ' 3 (2.21)
s = (z-l)/T l-O-WjTJz

[

Comparing Equation 2.10 and Equation 2.21 shows that

1 1 w
a = —— -1=- S--1 (2.22)

WjT 2K w.
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This expression would allow a to be designed when w w. was specified. To

demonstrate the relationship between analog and discrete frequency responses, the

frequency response of Equation 2.11 is plotted in Figure 2.5 for w w. = 10. which

corresponds to a = 0.5915. together with the frequency response of Equation 2.1 for

w, = 10 x 10" rad sec in the same graph. To observe the relationship between analog

and discrete frequency responses for smaller frequency values, the frequency scale was

made in logarithmic scale. Since the sampling frequency, in this case the clock,

frequency, should be twice the analog signal frequency being sampled, the major

concern will be the frequencies that are smaller than the Xyquist rate.The discrete

transfer function becomes

1

H(z) = (2.23)
1.5915Z-0.5915

Because of the Xyquist property of the discrete systems, the transfer function of the

H(z) is symmetric around w = 0.5wy. Also, for w<0.02 w , the switched capacitor

circuit of Figure 2.3(a) is a good approximation of the analog circuit of Figure 2.1. The

switched capacitor is a very poor approximation for w>0.1 w. At w w = 0.5. the

lowest attenuation occurs, and at w=w the magnitude is at the starting value. To
c -

improve the switched capacitor realization of Figure 2.1. it is necessary to increase w
or alternatively reduce w.. To show this property of SC configuration, the frequency

response of Equation 2.11 is plotted in Figure 2.6 for w w, = 50, which corresponds

to a = 6.9577. together with the frequency response of Equation 2.1 for w, = 2 x 10-

rad sec. in the same graph. The discrete transfer function becomes

1

H(z) = (2.24)
7.9577z-6.9577

From the Figure 2.6, much better correlation in the frequency range around w, can be

observed. Since w, was reduced by 5, the discrete transfer

continuous transfer function, thus, improving the realization.

observed. Since w, was reduced by 5, the discrete transfer function got closer to the
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B. SERIAL REALIZATION

Another switched capacitor network with a series SC resistor equivalent is shown

in Figure 2.7(a).

c
i

c
i

+ii~ ^ II

)
ft

II

c
2 4=

- CO
u"<n-l/2)

() (
b

)

Figure 2.7 Series Switched Capacitor Realization of Fieure 2.1.

(a) RC Equivalent Network (b) Equivalent Circuit of (a) for Even Phase Period.

Using charge conservation analysis, for (n-1/2)^ t/T< n, i.e., for the even phase

period where <Pj is off and <!>-, is on, we can equate the charges as

C
2
v
2

e
(n-l/2) = C

2
v
2
°(n-l)+ C

1
[v

1

e
(n-l/2)-v

2
e
(n-l/2)] (2.25)

and for the odd phase period

C,v,°(n) = C,v«(n-l/2)
2 2

(2.26)

By combining Equations 2.25 and 2.26 we obtain

C
2
v
2
°(n) = C

2
v
2
°(n-l) + C

1

[v
1

e
(n-l/2)-v

2
°(n)] (2.27)
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V
2
°(z) = V

2
°(z)z-

1 +(C
1
C
2
)V

1

e
(z)z"

1 2
-(C

1

C
2
)V

2
°(z) (2.28)

and the transfer function

V°(z) z"
1 2

1

Heo
(z) = —2J— = r—, (2.29)

Vj e
(z) l-ad + afV 1

1 + a

From Equations 2.26 and 2.29. it can also be written

V, e
(z) 1 1

H ee
(z) = V = p^ (2.30)

V
1

e
(z) l-ad + afV 1 1-t-a

To obtain the frequency response of Figure 2.7(a), it is necessary to relate a to w..

Applying the backward transformation of Table 2 in Appendix A to Equation 2.1

results in

w.Td+w.Tr 1

H(s) > Hz) = l

(2.31)
s = (l-z

[

) T 1-U+WjT) [

z
i

Comparing Equation 2.30 and Equation 2.31 gives

1 1 wa--— = - c- (2.32)
w, I 2k w.

It can be noted that the series switch possesses a zero at the origin. This zero

influences the phase response. The frequency response of Equation 2.29 is given in

Figure 2.8 for the case of (w. =0.1w ) together with the analog frequency response for

w, = 10 x 10
3
rad, sec. Since a= 1.5915, the transfer function in Equation 2.29 becomes

z
l/2

H(z) = (2.33)
2.59 15z- 1.59 15

The frequency response of Equation 2.29 for the case of (w, =0.02w) is also

given in Figure 2.9 together with the analog frequency response for w, = 2 * 10

rad sec. a= 7.9577, and the transfer function is
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z
12

H(z> = (2.34J
S.9577z-7.9577

it can he seen again that the sampling rate has a strong influence on the results.

C. PARALLEL-SERIAL REALIZATION

Another SC resistor equivalent used to replace the resistor R, in Figure 2.1 is

shown in Figure 2.10(a). This implementation uses the series-parallel SC resistor. The

equivalent representations of Figure 2.10(a) for the odd and even phase clocks are

shown in Figure 2.10(b) and (c). The even phase period <!>., occurs between (n-1 2)T

and nT.

The charge conservation equation for <!>., is given by

(Cj + C
2
)v

2

e
(n-1 2) = C

2
v
2
°(n-1) + C

1
v

1
°(n-1) (2.35)

+ C
1
[v

1

e(n-F2)-v,e
(n-l 2)]

Considering the next odd phase clock, it can be observed that

v
2

e
(n-l 2) = v

2
°(n) (2.36)

and it is also assumed that

v
1

e
(n-l,2) = Vl °(n) (2.37)

Using the relationship of the table of Appendix A and C, = C/2, a, = CJC results

v.°(z) J 1+z" 1

H00
(z) = —2-UL = __

( 2.38)
Vj^z) 2(l + Oj) 1-a^l + a

1

)- 1
z"

1

It can be seen that there is a zero at z = -l. This zero will result in a notch or zero

magnitude at half the sampling frequency. To plot the frequency response and

compare it with the analog response of Figure 2.1, it is necessary to develop a

relationship between c^ and w,. For this purpose, the bilinear transformation of

Table 2 in Appendix A is applied to H(s) given by Equation 2.1. The result will be

equated to Equation 2.38.

39



www.manaraa.com

+ .

*i &
r / /

y
l

II

c
4 Ca

• +

II

<a>

U°cn>

^)
q

>J*<n-l/2>

+

c,

uJn-1/2)

—• +

Jen)
2

cb>

II1r
U^n-1) ^n-1)

—* +

V^n-1/2) / +

) c
i

+

C 2

+
<J<n-l/2>
2

CO

Fieure 2.10 Parallel-Series SC Realization of Figure 2.1.
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Tw, 2

H(s) = ; —
> H(z) = -j (2.39)

I \v,

T 1 + z"
1

Tw,
1-

2

1 z" 1

1 w
i

1+- l

l +—L

In this passive RC case, the series-parallel SC resistor equivalent corresponds

exactly to the bilinear mapping if

20j = —--1 (2.40)
1 w.T

The frequency response of Equation 2.38 is given in Figure 2.11 for the case of

(w, =0.1w) together with the analog frequency response for w
{

= 10 x 10 rad sec.

since a. = 1.0915. the transfer function in Equation 2.38 becomes

1 1 + z-
1

H(z) = —
,, ,

—

—

(2.41)
2 (l + OjJ-ajZ"

O.5z + 0.5
H(z) = (2.42)

2.09 15z- 1.09 15

The frequency response of Equation 2.38 for the case of (w, =0.02w) is also given

in Figure 2.12 together with the analog frequency response for w, = 2 x 10 rad sec,

aj = 7.4577, and the transfer function in Equation 2.38 becomes

0.5z + 0.5
H(z) = (2.43)

8.4577z-7.4577

D. BILINEAR REALIZATION

The last SC realization of Figure 2.1 to be considered is shown in Figure 2.13(a)

and uses the bilinear SC resistor simulation. Figure 2.13(b) and (c) show an equivalent

circuit for Figure 2.13(a) during the <!>-, and <P, phase periods, respectively
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Fisure 2.13 Bilinear SC Resistor Simulation of Figure 2.1
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If the even phase period <!>-, occurs between (n-1 2)T and nT, C
{

is charged to

the voltage

v
cl

e
(n-l 2) = Vj

e
(n-I 2)-v

2
e
(n-l/2) (2.44)

and C, is charged to

v
c2

e
(n-l 2) = v/(n-l 2) (2.45)

At the beginning of the next odd phase O.. n<t T<(n+1 2), using the charge

conservation approach, the component of Equation 2.17 can be identified as

q L°(n)
= C

2
v
2
°(n) (2.46)

qm
e
(n-l 2) = C

2
v
2
e
(n-l/2) (2.47)

qc

°'e = C
1
v
cl

e
(n-l/2) + C

1
v
cl

°(n) (2.48)

where

v
cl

°{n) = Vl (n)-v
2
°(n) (2.49)

Combining Equations 2.46, 2.47, 2.4S, 2.49. and using the z-transform, Equation 2.17

can be written as

(Cj + CJV^z) = z'
1 2(C

2
-Cj)V

2

e
(z) (2.50)

+ C
1
[V

1

e
(z)z"

1/2 + V
1
°(z)]

Similarly, the following equation can be obtained

(Cj + CyV^z) = z'
1 2(C

2
-Cj)V

2
°(z) (2.51)

+ C
1

[V
1

°(z)z-
1 2 + V

1

e
(z)j

1"2
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during the even phase period. By summing Equation 2.50 and Equation 2.51 the

transfer function can be obtained as

V
2
(z) V

2
e
(z) V

2
°(z) 1+z" 1 2

Vj(z) V
1

e
(z)+ V

1
°(z) (l + a)+ (l-o)z"

H(z) = ^r— TTi- -rrzr — -r-rzijr < 2 -52 )

where a = C, C,.

In the bilinear SC resistor simulation, a complete clock period is really T 2,

rather than T because the input signal is sampled twice in a single clock period. If a

new period is defined as

T' = T 2
c

then Equation 2.52 can be rewritten

z'+l 1 1+z" 1

H(z) = =
r (2.53)

(l + a)z' + (l-a) 1 + a l-((a-l)/(a+l))z '

Again, it is necessary to develop a relationship between a and Wj to plot the frequency

response and compare it with the analog response of Figure 2.1. If the bilinear

transformation is applied to H(s) in Equation 2.1. the transfer function in the z domain

is obtained, using Equation 2.39. By equating it to Equation 2.53 we obtain

4 2 w
a = = £- (2.54)

W.T 7T w.
1 c 1

The frequency response of Equation 2.53 is given in Figure 2.14 for the case of

(w, =0.1 w ). Since a = 6.3662 the transfer function becomes

z'+l
H(z) = (2.55)

7.3662z -5.3662

The frequency response of Equation 2.53 for the case of (w, = 0.02w ) is also given in

Fisure 2.15. a =31.831, and the transfer function becomes

z'+ 1

H(z) = (2.56)
32.S31z-30.S31
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In this chapter the use of the SC resistor simulations of Chapter I have been

examined by implementing the passive low-pass, first order network of Figure 2.1. This

section also illustrated the importance of having the sampling frequency rather high.

In Chapter IV a second order switched-capacitor phase-locked loop will be

implemented by using the bilinear SC realization since the best SC realization obtained

from this chapter is the bilinear SC resistor realization.
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III. PHASE-LOCKED LOOP (PLL)

A. LOOP COMPONENTS
The essential elements of a phase-locked loop are the voltage controlled oscillator

(VCO). the phase detector, the loop filter and the amplifier.

1. Voltage Controlled-Oscillator (VCO)

In the VCO. an oscillator whose frequency is controlled by a voltage, the

amount of change in frequency is directly proportional to the level of the input voltage.

Contro

1

•

vo 1 tage

'./

VI-

a \
/

* /

b \
/ 7

/ \

/\/v
vCO outputs

Figure 3.1 Voltage Controlled Oscillator.

As seen in Figure 3.1, the VCO consists of two main elements, one of them is

an integrator, the other one is a comparator. As both inputs of the integrator are

constant voltages, its output is a ramp whose slope is determined by which terminal,

(+ ) or (-), has the more positive input voltage. The ramp is negative going if the

voltage at the (-) terminal is more positive than the voltage at the ( + ) terminal and

vice-versa. By continuously alternating the voltage at the (-) terminal above and below
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that of the ( + ) terminal, a triangular wave is generated at the integrator output. The

comparator output is a constant positive or negative voltage, determined by which of

the ( + ) or (-) terminals has the larger voltage. The output is negative whenever the (-)

terminal voltage is more positive than the ( -+- ) terminal voltage.

Before implementing a SC PLL. an analog PLL was implemented as

prototype. The VCO used in the PLL is shown in the Figure 3.2. [Ref. 5], and operates

as follows assuming the output of the comparator is initially HIGH.

1. The high level output, v , causes the analog switch connected to it to be ON.

2. This causes the voltage on the integrator (-) terminal, v., to be equal to V 3 if

we ignore the resistance of the switch. This makes the coefficient, b, in Figure

3.1

R 2 1

b =
R + R 2 5

R
! _ '

2R, 2
a = — = — (always)

3. Since a>b, the positive input causes the output of the integrator to be a

positive going ramp at output vv it is also shown in Figure 3.3.

4. At this point the voltage, v v at the ( + ) terminal of comparator is given.

v,, = [2U [—* C-+RJ (3.1)
31 R +RU + R 2

a

When the integrator output exceeds v
3

, the comparator output goes low,

turning the switch OFF.

5. b is now equal to 1 and a < b. This generates a negative going ramp at the

output of the integrator. At this point the voltage v
3

is given

v,„=
R
*

VpD
(3.2)

6. When the output of the integrator goes below v,, the comparator output, v
Q ,

goes HIGH and the cyle repeats. Using positive feedback on the comparator
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Figure 3.2 Prototype Voltage Controlled Oscillator.
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Figure 3.3 The Waveforms of the VCO.
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produces a hysteresis which is a key behavior of the VCO operation. As v„

changes between two values, so does the comparator (+ ) terminal voltage, v,.

If it did not change as the ramp voltage changed, it would immediately cause

the comparator to change again. This would eliminate any control of the

output signal frequency by VC.

To obtain a formula for the frequency of the VCO related to the input control

voltage V , let us consider the positive ramp case, rising integrator. In Figure 3.4(b)..

the output voltage v, is given as

1 ,V . V 2 3
-, = f-s-dt + $e-\-±—n +

CR 3
J

3 s sRC

V V 3V
v, = £_ t + -£- + £— t

RC 2 2RC

V t

v, = —£-[1+ ] (3.3)
2

2 RC

In the negative ramp case, the falling integrator oi~ Figure 3.4(c), the output

voltaee v., is eiven as

1 , ,
V 2 1

f
V dt + SB" 1

[
-s

[ 1 +
RC J c

s sRC

V V V 2

t + —£- + —£
t

RC 2 RC

V t

v, - -rMl--^r] (3-4)':
RC

If the graph of v, is drawn for the falling integrator case, because the slopes of

both cases are the same, in Figure 3.5. the graph can be limited by the v, voltage

values of the comparator which are given by Equations 3.1 and 3.2. These hysteresis

limits give the graph a triangular shape.

V V t

v = —£ £

2 2 RC
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Fieure 3.4 (a) Rising Integrator (b) Thevenin Equivalent circuit

(c) Falling Integrator.
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2

U
31

^0

2

•s, +

r ^

r^
<b t^t/2 \>T —> t

Figure 3.5 Falling Integrator Waveform of Figure 3.4(c).

when t = t
o

V
2 - V

31 * —V V tnc

2 2 RC
(3.5)

when t = t + T
c
/2 ;

v
2
= v

30

V V (tn+ T/2)_ c c v c

RC
(3.6)

If Equation 3.6 is substracted from Equation 3.5

V. T
v -v
31

v
30

4 RC
(3.7)
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The period of the triangular wave which is also the period of the VCO output can be

obtained as

4RC(v,.-v, n )

c V
c

The frequency can also be found as

V
f = S (3.9)

4RC(v
31

-v
30)

It can easily be seen that there is a linear relationship between the control voltage, V
,

and the output frequency of the VCO, f . The VCO sensitivity is defined as

K, = (3.10)
4RC(v

31
-v

30)

where the unity of K
3

is Hz Volt or rad s Volt. The experimental results showed that

longer integrator outputs result in a decrease in the linearity of the VCO.

2. Phase Detector

Generally, there are two categories for phase detectors, sinusoidal signal phase

detectors and square signal phase detectors. [Ref. 6], In the square case, the signal

may be the original waveform of the signals used or may have been produced by hard

limiting followed by amplification of sinusoidal signals.

The advantage of the square signal phase detectors is that the output of the

phase detector is independent of the input voltage levels, eliminating the automatic

gain control requirement. The other important advantage is that the sensitivity K, of

the sinusoidal phase detectors is not constant within an interval (O.tt) or formed of

truncated sinusoids. However, when the signals involved are square waves, or when it

is possible to transform them into square waves, phase detectors featuring a linear

characteristic over a certain interval are fairly easy to construct.

In Figure 3.6(a) the EXCLUSIVE-OR output signal can be used as a linear

phase detector, resulting when signals e' and en have the same sign, and 1

otherwise. The network implements the function
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[JjteiL
U(t)

LPF

<a)

-> t
2T ST/2

-> t

J
fo r/a+t. T+t.

2'
-> t

|T/2*t. T+t. jT/2+i 2T+^

cb)

Figure 3.6 (a)XOR and LP Circuit for a Square Signal Phase Detection
(b)Input and Output Waveforms of XORT)peration.
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v(t) = A Sign[e'J © Sign [eR ]
(3.11)

If the v(t) signal dc component v is extracted by low-pass filtering, the value

of the dc component of the signal v(t) can be calculated as a function of the phase

difference, <I> = <l>.-(p , <P. representing the input signal phase, and <t> representing the

VCO output signal phase

T
1

r
v = —) v(t)dt

when < <P< n

I
t
Q

T/2 T;2 + t T

v = -jr [ J dt +
J

- dt +
J dt +

J
- dt

]

t T/2 T/2+t

A

T
— (4t -T)

_ 2A T
v =— (2t - T )

_ 2A n
v = (4> ) for < <D < K (3.12)

71 2

where O = (t
Q
T) 2tt. The corresponding characteristic is represented in Figure 3.7.

The phase detector sensitivity value is

dv 2A
K. =

|
|

= (3.13)
1 d<P 7T

The characteristic can be made independent of signal e„(t) amplitude by

including a limiter in the circuit preceding the phase detector. This implementation is

also shown in Figure 3.6(a). Therefore it can finally be said that the phase detector

sensivity depends only on the logic voltage levels.
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Figure 3.7 Characteristic of the EXCLUSIVE-OR Logic Circuit of Figure 3.6(a).

3. Loop Filter

Loop filters are lowpass filters that are set between the phase detector output

and the amplifier input. The transfer function of the loop filter has a considerable

influence on the properties of the loop. The simplest low-pass filter to construct is the

RC filter of the transfer function

F(s) =
1

1 + ST
(3.14)

where Tj = RC. The implementation of this transfer function is shown in Figure

3.8(a). The use of such a filter produces a second-order loop. However, the

performances obtained are relatively restricted, mainly because only one parameter is

involved, the time constant r,. This prevents an independent choice of the two essential

parameters of a second-order loop, namely the natural angular frequency, w, and the

damping factor, £, when the loop gain K is otherwise given.
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u. -V t • ^3Ut in •- f • out

<>'

Figure 3.8 (a) One-pole Low-Pass Filter

(b) One-pole Low-Pass Filter With Phase-lead Correction Network.

If a resistor is added in series with the capacitor of the filter, C, the required

additional parameter can be obtained. This configuration in Figure 3.8(b) is called

phase-lead correction network, [Ref. 6], and the transfer function of the filter is

F(s) =
1 + ST,

1 + ST
(3.15)

where t^ = R
2
C and Tj = (Rj-t- R->)C . By judicious choice of elements Rj, R

2
and

C, the time constants Tj and t
2
can be obtained independently

4. Loop Amplifier

In some cases, a gain amplifier K
2
has to be fitted between the phase detector

and the VCO. This is, in particular, the case when the phase detector sensitivity K
1
and

the VCO modulation sensitivity K
3
are not high enough to produce a given loop gain

K. The use of gain amplifier K
2
overcomes this difficulty, since the loop gain K then

becomes

K. — K., K.-} K.- (3.16)
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The implementation in Figure 3.9 was used in the PLL as a hardware application. The

amplifier is an inverting type amplifier. The reason of using an inverting amplifier

comes from the stability conditions of the PLL. The gain is given as

K, - -
FL

R
(3.17)

Figure 3.9 Amplifier for the PLL.

B. GENERAL EQUATIONS

The phase-locked loop represented in Figure 3.10 is a device by means of which a

voltage controlled oscillator (VCO) delivers an output signal y , in synchronism with

the input signal v.. The input signal is obtained by passing the actual input waveform

through a hard limiter. As mentioned before, this will produce a linearly behavioured

PLL.
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Figure 3.10 Block Diagram of a Phase-Locked Loop.

1. General Time Domain Equations

In the diagram shown in Figure 3.2, the input signal y. and VCO output signal

yo are expressed as

ya(t)
= A'sin[wt + <Dj(t)]

y.(t) = ASignfsinlwt + cD^t)]]

yo(t)
= ASign[sin[wt+<& (t)]]

These signals have not necessarily the same angular frequency, the difference can easily

be included in Oj(t) - <D
o
(t). The output signal results from the XOR operation

ASign[sin[wt + <Dj(t)]] © Sign[sin[wt + O>
o
(t)]] (3.18)

From Fieure 3.11 the intermediate signals can be defined as

Ul (t) = KjlOjd) - <D (t)] (3.19)
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Figure 3.11 Linear Model of the PLL.

where Kj = 2A/71 . If F(s) is the loop filter transfer function given by Equation 3.15

and f(t), its impulse response, the control signal of the VCO is given as

u
2
(t) = K

2
Uj(t) * fit) (3.20)

The symbol * represent the convolution product. Finally, since the VCO is a

frequency-modulated oscillator, K
3
being its modulation sensivity in rad; sec/ volt,

d<P

~dt~~

= K,u,(t)3"2 V (3.21)

If Equation 3.19, Equation 3.20, and Equation 3.21 are combined, general time-domain

equation that governs the behaviour of PLL can be obtained as

d<D
o _

dt
K

1
K

2
K

3
[d)

i

(t) - O (t)]*fU) (3.22)
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The product K,K
2
K

3
is replaced by K = KjK^K v The constant K then

represents the servo device open-loop gain. To supply the negative sign to the

summation, one of the constants. K,, K-,. K v should be negative. Hence, a stable PLL

can be obtained. The general equation is thus

d<P
> = K[0.(t) - <X>

o
(t) ]

* fT.t) (3.23)
dt

If the Laplace transform is used, the general equation becomes

s4>
o
(s) = K [0>j(s) - <P

o
(s)] F(s)

4> (s) KF(s)
H(s) = 2 = (3.24)

<D.(s) s+KF(s)

The quantity <P(s) <P-(s) = 1 - H(s) is the error function of the PLL. where O(t) is

the instantaneous phase error given by

<D(t) = <P.(t) - 0> (t)
o v

The error function is given by

<D(s) s

1 - H(s) = = (3.25)
cD.(s) s+KF(s)

i

The corresponding loop filter transfer function is given by Equation 3.15. If Equation

3.15 is inserted in Equation 3.24 and Equation 3.25. the transfer and error function

equations can be obtained as

Kt.,s+ K
H(s) = 5 = (3.26)

t iS
- + (1 + Kt^)s+K

T.S
2 +S

1 " H(s) = t—J— — (3.27)
t

1
s^ + (1 + Kt

2
)s+K
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Using Equation 3.26 and Equation 3.27, the equations corresponding to the time

domain can easilv be derived.

d<P dO d4>
t, —-f- +(1 + Kt,)—-2-+KOo(t)

= Kt, L-+KO.(t) (3.28)
1

dt" - dt
° l

dt
'

dO> d<P dO> d<P
T, — + (1 + Kt,) + K4>(0 = t. ± + L (3.29)

1

dt" ' dt ' dt- dt

2. Parameters of a Second Order Loop

The denominator of the second order transfer and error functions, when

Laplace transformation is used, is eenerallv formulated as s +2Cw s + w , where w isr ° ' n n ' n

the natural angular frequency and £ is the damping factor. It is stated, by definition.

K
w
n
2 = (3.30)

T
i

14-Kt,
2w

n
^= (3.31)

T
l

The advantage of using one-pole low-pass filter with phase lead correction as

the loop filter becomes more clear if Equation 3.30 and Equation 3.31 are considered;

the natural angular frequency, w , can easily be controlled by changing t,, and the

damping factor, £, can be controlled by changing T, independently. With these

notations, the quantity K(xJ^\) can ^e expressed

T, 1 w 2

K -L = 2£w - — = 2Qw
D
- —o- (3.32)

The transfer and error functions, Equations 3.26 and 3.27 respectively, become

4> (s) (2Cw - w 2/K)s+w 2

H(s) = £— = ;
n 2 _n—

(
3.33)

<Dj(s) s
2+2^w

n
s +w

n
2
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<P(s) s
2 + (w :

K)s
1 - H(s) = — ,

" 5— (3.34)
<P.(s) s" + 2lw s + w "

v ' • n n

C. TRANSIENT RESPONSE

In this section the response of the loop to different disturbances occuring at

instant t = will he examined. The disturbances involved are

* Input signal phase step 9

* Input signal angular frequency step Aw

I. Phase Step Response

At instant t = 0, a G amplitude phase step is applied to the input signal

0.(t) = Gy(t) (3.35)

where y(t) is the unit step function. In Laplace Transformation form

e
a>.(s) = (3.36)

the phase step response of the VCO can be obtained using Equation 3.33 and Equation

3.36.

[(2Cw -w 2/K)s +w 2
]0 s

O
o
(s) = " " ^ ,

n
(3-37)

s~ + 2lw s + w "
T n n

also the phase error, <D(s) = O.(s) - <P (s), can be derived

e
<D(s) =

[ 1 - H(s)]— (3.38)
s

This leads to

(s + w 2 K)8
°< s

>

= ^^" 7 2
< 3 ' 39 >

s~ + 2uw s + w "
T n n
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2. Frequency Step Response

If a frequency step Aw is applied to the input signal at instant t =

<Dj(t) = Awt y(t) (3.40)

In Laplace transformation form

Aw
Oj(s) = r (3.41)

The frequency step response of the error function using Equation 3.34 and Equation

3.41 is given bv

0(s) =
[ 1

" H(s)]—i- (3.42)
s~

this also leads to

Aw w Aw
4>(s) = ^— + -77 t— 5- (3.43)

s" + 2C\v s + w ~ K s( s -f- 2l,w s + w ~

)

' n n v - n n

D. EXPERIMENTAL RESULTS OF THE ANALOG PLL

Using the derived functions in the previous sections, a prototype analog phase-

locked loop was implemented in hardware. This implementation was converted to a

switched-capacitor realization of the PLL. Prior to the SC implementation the

experimental results have been recorded to compare the analog and the SC versions of

the PLL.

1. Voltage Controlled Oscillator (VCO)

It is very important to build a linear VCO in some PLL applications.

Llowever, a tolerance of 5% or 10° o on the linearity of the modulation characteristic

within the frequency variation range is more often than not acceptable, except for

certain applications, such as the use of a phase-locked loop as a good linear frequency

discriminator.
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The circuit in Figure 3.12 was built in prototype, and voltage frequency

relation is given in Figure 3.13. The dotted line in Figure 3.13 is drawn according to

Equation 3.9.

R = 10 KQ
C = 730 pF

V M " v
i0

= ^ ^ (fr°m Figure 3.14)

The waveforms of the VCO are given in Figure 3.14. To make the triangular

wave of the integrator in Figure 3.12 short, two comparators were used. The output

voltage levels of the first comparator were ( + 6.5.0) volts and the second comparator

output voltage levels were ( + 6.5.-6.5) volts. The second comparator also provided the

logic levels for the XOR operations.

2. Loop Behavior

To construct the phase-locked loop, the configuration in Figure 3.15 was used.

The input to the PLL can he any periodic waveform. This input is converted to a

square waveform by a zero-crossing comparator. At the same time, the logic level

adjustment for the XOR operation is done. The other input of the XOR comes from a

frequency divider. For this purpose a digital counter was used. The clock input of the

counter is fed by the VCO output. Any of the outputs of the counter can be used as

the input to the XOR. If Q, is used, the VCO frequency is divided by 2. if Q-, is used,

the VCO frequency is divided by 4. if Q^ is used, the VCO frequency is divided by 8,

and so on. At the same time, integer multiples of the input frequency can be obtained

when the PLL is in lock. For instance, if Q^ is used as an output from the counter, The

Q2
, Qp and the VCO output are integer multiples of the input frequency by 2. 4. and 8

respectively.

In the experiment an LF356N CMOS operational amplifier was used as the

loop amplifier. The gain K., was 5.1. This operational amplifier was also used as a

summer to obtain a free running frequency for the VCO. Since it was an inverting

summer, the acquisition voltage was obtained from the negative power supply. The 18

KH resistance can be changed to obtain a different free-running frequency of the VCO.

VCO control voltage, V , can van- between V and 2(Vr>r\-1.5V) and provides a wide

range of frequencies. The power supplies used in the prototype are ( + 6.5,-6.5)V, so V

can var\T between V and 10 V. Since this control voltage is obtained from the

amplifier and the saturation voltage of the operation amplifier is 5V, the control
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Figure 3.12 Prototype Voltage Controlled Oscillator VCO.
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Figure 3.14 (a) The Output of the Integrator (0.5 volt/div.)

(b) The Output of the VCO (5 volt/aiv, 5 fisec/div).
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Figure 3.15 The Prototype Phase-Locked Loop.
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voltage cannot exceed 5V. The other concern is the loop gain K. Since the amplifier is

an inverting type amplifier, this provides the required negative constant for stability

and supplies a positive control voltage to the VCO for proper operation.

As the loop filter, a single-pole low-pass filter with phase lead correction was

used. The time constants T, and T, in Equation 3.15 are given as

X
l

= (Rj + R^C

tj = (10 x 10
3 + 100)0.33 x 10" 6

T, = 3.33 msec.

which yields a pole frequency of 4S Hz. Also

T
2
= R

2
C

T
2
= 100x0.33 x lQ"

6

t
2
= 33 usee.

and a zero frequency of 4.8 KHz. If these time constants are inserted into Equation

3.15, the transfer function of the loop filter is obtained as

1 + 33. x I0'
6
s

F(s) = r (3.44)
1 + 3.33 x 10' 3

s

The frequency response of the loop filter is given in Figure 3.16 and the

frequency response obtained from a digital signal processor, SD-360. is given in Figure

3.17. Referring to Figure 1.8, the capture and lock ranges were recorded as following

frnn = 4.5 KHz. - 65 KHz.

f
lock

= 4.5 KHz. - 97 KHz.

These results were obtained by connecting the VCO output directly to one of the XOR
inputs. When the PLL was in lock, the input frequency was equal to the VCO

frequency. Then, Q
1
output of the counter was connected to the XOR input. The

corresponding capture and lock ranges were recorded as following

f = 2.25 KHz. - 32.5 KHz.

f
lock

= 2 - 25 KHz> 4S - 5 KHz<
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Figure 3.17 Frequency Response of the Loop Filter from a Spectrum Analyzer.

3. Computer Simulations

To obtain a computer simulation of the PLL, the equations obtained in

section B and C were used. When the numeric values are used, the following transfer

and error functions are obtained. First, the phase detector sensitivity is given as

K
l

=
2X6.5

71

= 4.138 V/rad

K
2
= 5.1

K
3
= 24.46 x 10

3 Hz/V (From Figure 3.13)

K
3
= 24.46 x I0

3
27t = 15.37 x io

4 rad/V

K. — K.
|

K.^ K.-J

K = 3.243 x io
6

To obtain the natural angular frequency, w , and damping factor, ^, Equation

3.30 and Equation 3.31 are used.
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->

W " =
n

K

T
i

W =
n

31208.75 rad sec

n
4.967 KHz.

2lw1 n

1 + Kt,

t
i

£ = 0.52

The transfer function in Equation 3.33 becomes

s + 30288.65
H(s) = 32156.8 =

s
2 + 32457. 1 + 973986070

(3.45)

The error function in Equation 3.34 becomes

s
2 + 300.3s

1
- H(s) =

5
(3.46)

s
2 + 32457. 1 + 973986070

The Bode plot of the transfer function is given in Figure 3.18, and the Bode

plot of the error function is given in Figure 3.19. It can be said that the transfer and

the error function makes the phase locked loop a bandpass device. [Ref. 7].

The phase step response of the transfer function is given in Figure 3.20. using

Equation 3.45. The phase step response of the error function is given in Figure 3.21.

using Equation 3.46.

The frequency step response of the error function is given in Figure 3.22. using

Equation 3.42. In the last three graphs, the y axis is normalized by the amount of the

step function, 8 radians for the phase step, and the Aw rad sec for the frequency step

function.

As an experiment, a frequency shift key, FSK, modulated signal was applied

to the PLL. The frequencies used were 20KHz. and 30KHz., representing the logic

levels 0. 1 respectively. The oscillator outputs are given in Figure 3.23. This figure

agrees well with Figure 3.20, regarding the amount of overshoot and the settling time

of the VCO control signal.
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Fieure 3.19 The Bode Plot of the Error Function.
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Figure 3.22 The Frequency Step Response of the Error Function.

Fisure 3.23 (a) The Information Sienal f = 300 Hz.
(5) The Output of the PLL (0.5 Volt/div.1

, lmsec/div).
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IV. SWITCHED-CAPACITOR REALIZATION OF PLL

A. TWO PHASE CLOCK

The clock, circuits are perhaps the most important part of an analog sampled

data system. They should not be overlapping and should have a duty cycle as large as

possible to permit charge transfer. A circuit that supplies nonoverlapping clocks from

a single input is shown in Figure 4.1(a), and the waveforms obtained from an

oscilloscope are shown in Figure 4.1(b) and (c). The clock frequency can vary as the

square wave input changes.

input _TLTL

CD4BBDO—

*

J>
"rLrLn~

9 $

aw*! -UTJ-LT
«b

Figure 4.1 (a) Clock Circuitry.

To prevent the overloading, two digital CMOS buffers were used. The other clock,

circuitry components were CMOS inverters, CD4069, and CMOS NOR gates, CD4001.

B. VOLTAGE CONTROLLED OSCILLATOR (VCO)

The analog version of the VCO of Figure 3.12 was converted to switched

capacitor VCO by using the bilinear SC realization in Figure 1.6. Two of the
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Figure 4.1 (b) Output Waveforms f = 200 KHz. (5 Volt div., 1 ^lsec div.).

Figure 4.1 (c) Nonoverlapping Property (5 Volt div., 0.5 usee div.).
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continuous resistors were excluded to change the frequency-voltage characteristic of the

VCO. R and R 2 in Figure 3.2. Since the rest of the resistors are part of the voltage

dividers, as the clock frequency changes, the VCO output frequency remained constant.

The major problem encountered during the experiment was the distortion of the

waveforms at the higher frequencies because of the fact that the clock frequency should

be an integer multiple of the oscillation frequency, [Ref. 8]. Therefore, it is important

to keep the sampling rate rather high in order to minimize the phase jitter. In order to

find the capacitor values for the bilinear realization, Equation 1.22 is used. The clock

frequency was 200 KHz., and the calculations were made using this value. The SC

version of the VCO is shown in Figure 4.2 and the waveforms are shown in Figure 4.3

and Figure 4.4 for different sampling rates. These waveforms agree well with the

waveforms in Figure 3.14. The experimental frequency-voltage relationship is given in

Fiaure 4.5 for f = 400 KHz. The dotted line stands for the theoretical curve whose
c

equation is given in Equation 3.9, using v,, — v^„ = 1.8 Volt, obtained from Figure

4.3.

C. LOOP FILTER

1. Snitched Capacitor Realization.

The SC version of the loop filter is shown in Figure 4.6. The bilinear switched

capacitor realization was used for the SC conversion. This choice was made based on

the results given in Chapter II. Since the best realization obtained from Chapter II was

bilinear SC realization, the continuous resistors were converted to their bilinear

switched capacitor equivalents. The transfer function in the s domain is given by

Equation 3.15. If the bilinear transformation is applied to Equation 3.15, the transfer

function in the z domain can be obtained as

2t, 2t,
(1 + 2_)z + (l- 2_)

T T
F(s) - —^ rr- F(z) = (4.

1-z 1

2t, 2t,

T * 1+z -i -

T
s=—(—^r) (i+-^)z+(i--^—

>

Since the actual clock perod is really T 2 rather than T because the input signal is

sampled twice in a single clock period, the transfer function in z domain becomes
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Figure 4.2 The Prototype Switched Capacitor VCO.
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4T-, 4t^
(1+ --)z + (l- 2_)

T T
F(z) = c- ^ (4.2)

4r. 4t,
(1+—J-)Z+(1—

;

jX-)

c c

If F(z) is to he calculated in terms of the actual experimental values, the following

results can be obtained.

-» -^ ^
Tj = 3.33 msec.

T^ = 33 Jisec.

f = 200 KHz.
c

and the transfer function becomes

27.4z-25.4
F(z) = (4.3)

2665z-2663

Since the sampling rate was very high, it was not necessary to make frequency

prewarping. The frequency response of this transfer function is given in Figure 4.7.

This figure agrees well with the frequency response given in Figure 3.16.

2. Loop Behavior

The clock effect on the loop filter frequency response has a great influence on

the loop behavior of the phase locked loop. Since the continuous resistances were

replaced with their SC equivalent realizations, the constants of the filter, t,, t,, become

1 1

I. = ( — + —)C (4.4)
1 4C,f 4C,f

1 c 2 c

c

4clfh - -TT7— (4-5)

l c

In the experiment C
{

= 125 pF, C
2
= 12.5 nF. C = 0.33 jiF, and f, = 200 KHz. The

capacitor values were found by using Equation 1.22. The time constants were t, = 33

^isec, and T-, = 3.33 ^ec. If the clock frequency is changed, these time constants

change. If the clock frequency is increased, Tj and T., decreases linearly. For f, = 300

KHz. r, = 22 ^ec, and the pole and zero frequencies are calculated as
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f
>

=
2,

w
l _ *

lUXi

71.7 Hz.

f, =
w. 1

= 7.23 KHz.
27T 27TT,

From these results it can be seen that if the clock frequency is increased by 50%, the

critical frequencies increase 50%. For f
c
= 400 KHz. tj = 1.665 ^sec, t

;
= 16.5

Usee, and the pole and zero frequencies

fj = 96 Hz.

f
2
= 9.6 KHz.

The clock effect is shown in Figure 4.8. The results were obtained from a digital signal

processor, SD-360.
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Figure 4.8 The Clock Effect on the Loop Filter.

The SC version of the phase locked loop is shown in Figure 4.9. This circuit

was obtained by substituting the continuous resistors of Figure 3.15 with their bilinear

SC realizations. The circuit of Figure 4.2 was used as the SC voltage controlled

oscillator. The picture in Figure 4.10 was taken while the PLL was in lock, f, = 200

KHz., f = 20 KHz.
vco
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Figure 4.9 The SC Version of the PLL.
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A/WV (a)

*3NP»

(b)

Figure 4.10 (a) The Input to the PLL (b) The Output of the SC VCO (5 Volt/div., 20 usecd

Referring to Figure 1.8, the capture and lock ranges were recorded for various

clock frequencies. Since the number of meeting points of the VCO frequency and the

clock frequency decreased as the sampling rate decreased, it was difficult to measure

the capture and lock ranges accurately for higher input frequencies. The capture and

lock ranges were recorded between 2.4 KHz. and 64 KHz.

D. LOOP AMPLIFIER

For the SC realization of the loop amplifier shown in Figure 3.9 the circuit

shown in Figure 4.11 was used. The acquisition voltage was supplied from the negative

power supply to obtain a free running frequency at 25 KHz.. For this purpose the 18

Kf2 resistor in Figure 3.15 was replaced with a 32.5 Kft resistor. To change the free-

running frequency externally this resistance was not replaced by a SC realization. The

free-running frequency was made lower than the analog prototype PLL free-running

frequency to make the sampling rate rather high.

As an application, the resistor R of Figure 3.9 was replaced by the parallel SC

resistor realization and R
f
was replaced by a modified series SC resistor realization. The

series switch of this series SC resistor realization was removed because it was not
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Figure 4.11 (a) A Practical Realization of Fieure 3.9
(b) Equivalent Circuit of (a) when 4>, is closed

(c) when <I>
2

is closed.
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necessary and would cause the op amp to have no feedback during one o[ the phase

periods.

If the charge conservation approach is used to analyze Figure 4.11(h). the

components of Equation 2.18 are identified for the even clock phase period.

(n-1 2)<t/T<n

U6
^') =

qm
o
< t> +<ic

0,e
< t)

t<;>t

q L
e
(n-l 2) = C

2
v
o
e
(n-l 2) (4.6)

qm°(n-l) =

qc°(n-l)
= - ClVl °(n-l) (4.7)

v
o
e
(n-l/2) = - (C

1
/C

2
)v

1
°(n-1) (4.8)

V e
(z) C, , ->

Hoe
(z) = £J - - —^z' 1 2

(4.9)
\7(z) c

2

It can be seen that Figure 4.11 acts like an inverting amplifier with a gain of Cj C-, and

a delay of T 2 seconds. Note that voltage gain can be achieved if Cj is larger than C.,.

It is also noted that at no time the op amp was without some form of feedback. In the

even phase period. C-, is charged to the voltage given by Equation 4.8 and will hold

that voltage indefinitely under ideal conditions. Therefore, as long as v, (n-l) does not

cause v e
(n-l 2) to saturate the op amp, the circuit performs as expected.

It is observed that the z-domain transfer function is multiplied by a half-delay,

z . This z can be changed to a full delay, z , by the use of a sample-and-hold

circuit. The circuit is given in Figure 4.12.

Here it is seen that during the <!>., phase v (n) is stored in the holding capacitor

C
h

. During the next phase period, when <J>j closes, v
Q
(n) is available at v

oh
. Therefore

v
oh°(n+l/2)

= v
o
e
(n) (4.10)

V
oh°(

z
>
= V^)2

" 1 2 = " (
C

l

C
2
)z

" lv
i°(

z) (
4 ' 11 >
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Figure 4.12 Use of the Sample-and-hold to Obtain an Inverting Amplifier with a Full Delay.

To show these delays and the waveforms of v and v ,, the picture in Figure 4.13 was

taken from an oscilloscope.

E. APPLICATIONS OF THE SC PLL

1. FSK Demodulator

The frequency shift-keying (FSK) is used for transmitting low and medium

speed digital data over existing telephone lines. An FSK modulator encodes the digital

data into an audio-frequency signal, where the two binary states are represented by two

discrete frequencies. The FSK demodulator demodulates the received FSK signal and

restores the original data in a binary format. The phase-locked loop techniques are

widely used for FSK demodulation. When the PLL is locked on the FSK signal, the

PLL output voltage tracks the shifts in the input frequency.

The demodulator was breadboarded using the SC phase locked loop. The

clock frequency was 300 KHz. The discrete frequencies were f. = 20 KHz. and L =

30 KHz.. The maximum FSK transmission rate was recorded as 1200 baud. A picture

of a transmission at 300 baud is shown in Figure 4.14. The output of the PLL was

passed through a low-pass filter with a pole frequency of 1.33 KHz., and fed to a

comparator to obtained the desired logic levels.
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Fieure 4.13 (a) Output of the Inverting Amplifier with a Half Delav
(b) Output ol the Sample-and-hold with a Full Delay (f = 250 KHz., 2 Volts 'div., 2 usee div.)

2. Frequency Synthesis

A frequency synthesizer can be built around a PL L as shown in Figure 4.15, a

frequency divider is inserted between the VCO output and the phase comparator so

that the loop signal to the comparator is at frequency f while the VCO output is NT .

This output is a multiple of the input frequency as long as the loop is in lock. A digital

counter, CD4024, was used as the frequency divider shown in Figure 4.9. If Q4 , pin 6

of the counter, is used as an input to the phase comparator, the comparator input

frequency will be a divide-by- 16 from that of the VCO output frequency. This will

result in a VCO output of 16 times the input frequency as long as the loop remains in

lock.

Using the configuration in Figure 4.15, frequencies lower than the input signal

frequency can also be obtained by using the other outputs of the counter. If Qj is used

as the input to the phase comparator the input frequency is divided by 2 at the Q2

output, by 4 at the Q 3
output, by 8 at the Q4

output, and so on.
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Fieure 4.14 (a) Binarv Data Input to be Modulated
(b) Demodulated Binary'Data (5 Volts div., 1 msecdiv.).

Input Phase
comparator

5-n *

Loop
' Fi Iter

uco

Output
Nf_

Figure 4.15 Frequency Synthesizer Block Diagram.
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3. Tracking Filter

SC filters have pole frequencies which are directly proportional to the clocking

frequency. It follows that the frequency response of a SC filter can be frequency scaled

by programming the frequency of the clock in the desired manner. This property is

used in the design of the tracking filter show in Figure 4.16, [Ref. 9],

Input
Si gna

I

f.
Phase

Comparator

?F~

N $

LP
Fi Iter > ftrp

YCO

^_,
cj_k

Switched capacitor -filter

with pole -frequency at i/IS

times clock frequency

Output

Figure 4.16 Block Diagram of a Tracking Filter.

The input signal is fed both to a phase-locked loop as well as to the SC filter.

When the PLL locks onto the input signal, the VCO frequency will be exactly X times

the input frequency. The VCO output is used to drive the switches of the filter which is

designed to have a pole frequency equal to (1/N) times the clocking frequency. It

follows that the pole frequency of the filter will be equal to the frequency of the input

signal, provided that the phase-locked loop is in lock.

The switched capacitor filter can be designed to have any desired function

(e.g., bandpass, low pass, etc.) as well as any desired order. A discrete prototype of the

circuit of Figure 4.16 was built and the PLL circuit of Figure 3.15 was used in Figure

4.17. The divide-by-N circuit was chosen as a divide-by- 16 by using the Q4
, output of

the binary counter, CD4024.
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Figure 4.17 The Prototype Low-Pass Tracking Filter.
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A first order SC low-pass filter was constructed using the bilinear SC

realization. From Equation 2.1 the pole frequency is given w, = 1 t, = 1 R,C,

rad sec.

f, = Hz. (4.12)
1 2ttR

1
C,

If the bilinear SC realization is used for the continuous resistor, R.. the pole frequency

f becomes
i

2f C,
f, = —2 [- (4.13)
1 K C,

Since f = 16 f. Equation 4.13 becomes
c 1 "

l
l

32

7T

-,:
C

'

1 Ĉ2

c
l

7t

C
2

32

provided that f, = f. If the PLL is in lock, one can always obtain pole frequency

attenuation of 1 v 2 and a phase shift of 45 degrees at the filter output since a first

order low-pass filter is used.

In the experiment Cj = 1 nF, and C^=10 nF. The output phase and

magnitude of the SC filter was observed to remain constant irrespective of the input

frequency between 1 KHz. and 6.5 KHz. The waveforms of Figure 4.17 are shown in

Figure 4.18 and Figure 4.19 for a 4 KHz. and 6.25 KHz. for sinusoidal input signal,

respectively. The filter output had the same pole frequency attenuation and a 45 degree

phase shift.
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Fisure 4. IS The Input and the Output Waveforms of the Fisure 4.17,
f = 4 KHz. (1 Volt.div., 20 jisec/div.).

Figure 4.19 The Input and the Output waveforms of the Fieure 4.17,
f: = 6.25 KHz. (1 Volt div., 20 |isec;div.).
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V. CONCLUSION

In this thesis research the resistors of an RC network were replaced by the

switched capacitor (SC) networks, resulting in a sampled data equivalent network.

Many of the switched capacitor networks described in the literature have been either

for filtering or analog-to-digital conversion applications. SC networks are also useful

for realizing many other signal processing functions. In the research some of the SC

building blocks, useful in realizing adaptive systems, were described as well as some

passive RC filter applications.

As stated in the abstract, it was shown that the switched capacitor resistors were

exactly equivalent to resistors by themselves, however, such an equivalence might not

hold true when the realizations were used to replace resistors of an RC active network

due to the discrete-time nature of SC networks. It was also shown that it was

technologically possible to include digital circuitry along with SC networks in the same

IC network.

During the research, first, the types of realization methods and their properties

were discussed. Furthermore, some of the main SC building blocks were presented such

as a voltage controlled oscillator (VCO), an amplifier, and a hard limiter. These

building blocks led to the design of a more complicated SC circuit, a phase-locked loop

(PLL). First, an analog version of the PLL was breadboarded, then, it was converted to

a switched capacitor PLL using the realization methods mentioned before.

Experiments showed that the clock frequency should be an integer multiple of the

oscillation frequency. For this reason the sampling ratio was kept rather high in order

to minimize the phase jitter. This was the major limitation on the SC PLL design. To

avoid this restriction, the SC VCO was replaced by its analog version, resulting in a

hybrid phase-locked loop, [Ref. 10]. The results obtained from the hybrid version were

very close to the analog version ones. The hybrid circuit using SC network technology,

also had the advantages such as accuracy, practical implementation, and lower cost.

In the design mostly MOS switches, MOS amplifiers, and MOS digital circuits were

used to take advantages of the MOS technology and probable further VLSI design of

the circuit.
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APPENDIX
A

TABLE 1

SUMMARY OF SOME Z-TRANSFORM PROPERTIES

z - TRANSFORM SEQUENCE

aX(z) + bV(z) ax(n) + bv(n)

z'
k Y(z) y(n-k)

Y(z/b) bny(n)

dY(z)
— z

dz
ny(n)

W 1

) y(-n)

X(z) V(z) x(n) * v(n)
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TABLE 2

RELATIONSHIPS BETWEEN CONTINUOUS AND DISCRETE
DOMAINS

Transformation H(s) > H(z) H(z) > H(s)

Backward
1-z" 1

1

s

T 1-sT

Forward
1 ,

c — M — "' l
\ z = 1 + sT

'
Tz-' *' " '

Bilinear
: i-z- 1

l + (T/2)s

1-(T 2)s
5

i

T 1+z' 1

Impulse Invariant s - (1 T)lnz z = e
sT

io;
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